Synthesis and chemistry of 10,11-dihydro-5-phenyl-5Hdibenzo[b, f]phosphepine 5-oxide, \dagger the 5-propyl analogue and related phosphonium salts

Stuart Warren ${ }^{a}$ and Paul Wyatt ${ }^{*, \alpha, b}$
${ }^{a}$ University Chemical Laboratory, Lensfield Road, Cambridge, UK CB2 1EW
${ }^{b}$ School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK BS 8 ITS

The preparation of the title compounds is greatly improved by combining seven steps (three lithiations, three substitutions and an oxidation) into a one-pot procedure. The hydrolysis of the related phosphonium salts, the lithiation of the P-propyl phosphepine oxides and their reaction with electrophiles are described.

Our programme of development ${ }^{1,2}$ of dibenzophosphepines such as $\mathbf{1}$ as chiral auxiliaries based on our diphenylphosphin-

1

2
oyl chemistry ${ }^{3}$ required a preliminary study of the synthesis and Horner-Wittig chemistry of simple achiral 10,11-dihydro$5 H$-dibenzo $[b, f]$ phosphepine 5 -oxides such as $2(\mathrm{R}=\mathrm{Ph}, \mathrm{Pr})$. We report full details of this study together with some unexpected results encountered along the way.
The simple phosphepine oxide $\mathbf{2}(\mathrm{R}=\mathrm{Ph})$ has been made several times ${ }^{46}$ in poor yield by the lithiation of dibromobibenzyl 4, itself prepared by lithiation of 2-bromobenzyl bromide 3 (Scheme 1). The conversion of $\mathbf{3}$ into $\mathbf{4}$ used PhLi in refluxing

Scheme 1
diethyl ether ${ }^{7}$ occurs in 60% yield while the best reported (35% yield by Segall et al. ${ }^{4}$) cyclisation to 5 required $\mathrm{Bu}^{n} \mathrm{Li}$ in boiling benzene prior to the addition of the electrophile.

Parham et al. ${ }^{8}$ had meanwhile reported that lithiation of 3 with one equivalent of $\mathrm{Bu}^{n} \mathrm{Li}$ in THF at $-100^{\circ} \mathrm{C}$ gave monobromobibenzyl 7 by further lithiation of 4 (Scheme 2). Half the $\mathrm{Bu}^{n} \mathrm{Li}$ is needed to lithiate half of the molecules of $\mathbf{3}$ present by

[^0]

Scheme 2
exchange with the benzylic bromide. This lithiated species then reacts with unreacted 3 . The remaining half of $\mathrm{Bu}^{n} \mathrm{Li}$ lithiates one of the aryl bromides of the coupled product 4 to give 6 which is protonated during work-up.

We reasoned that both lithiation reactions could probably be performed in one pot in THF at $-78^{\circ} \mathrm{C}$ and that side products in the first lithiation, such as $\mathbf{6}$, which would be quenched and removed when 4 is isolated, would be intermediates in the subsequent dilithiation of 4 . Hence telescoping the two lithiations into one pot could enhance the yield-none of $\mathbf{6}$ would be lost as unwanted 7. This improvement was remarkably successful. Treatment of 3 with 0.5 equiv. of $\mathrm{Bu}^{n} \mathrm{Li}$ in THF at $-78^{\circ} \mathrm{C}$ for 40 min gave 4. Without isolation this solution was treated with a further 1.0 equiv. of $\mathrm{Bu}^{n} \mathrm{Li}$ in THF at $-78^{\circ} \mathrm{C}$ for 30 min to give $2,2^{\prime}$-dilithiobibenzyl which was then quenched with PhPCl_{2} to give the phosphepine and immediately oxidised to the phosphine oxide 5 (Scheme 3). The best yield in previous preparations had been obtained by Segall et al. $(21 \% \text { from } 3)^{4}$ but we obtained a 75% yield in a one-pot process involving a formal seven steps-three bromine-lithium exchanges, one $\mathrm{S}_{\mathrm{N}} 2$ reaction at a benzylic position, two nucleophilic substitutions at phosphorus and an oxidation.
Our normal procedure for making alkyldiphenylphosphine oxides ${ }^{3}$ involves the alkaline hydrolysis of alkyltriphenylphosphonium salts. The equivalent here would be the alkylation of the phosphine 9 and the hydrolysis of the resulting phosphonium salt 10 (Scheme 4). Allen et al. ${ }^{9}$ had already established that such phosphonium salts prefer exocyclic cleavage to give 5alkylphosphepines rather than endocyclic cleavage to give open chain compounds such as $\mathbf{1 2}$.

We could prepare the phosphine 9 by reduction of the phosphine oxide 5 with trichlorosilane ${ }^{10}$ in 77% yield and then the

Scheme 3 One-pot synthesis of 10,11-dihydro-5-phenyl-5 H -dibenzo[b, f]phosphepine 5-oxide from 2-bromobenzyl bromide

Scheme 4
phosphonium salt 10 in 86% yield. We preferred the procedure of Coumbe et al. ${ }^{11}$ in which the phosphine oxide $\mathbf{5}$ is reduced with poly(methylhydrosiloxane) (PMHS) and alkylated without isolation of the intermediate phosphine to give $\mathbf{1 0}$ in 88% yield from 5. In our experience the Coumbe procedure is preferable, providing that the phosphonium salt crystallises during workup. If isolated phosphine is required, trichlorosilane reduction is to be preferred.

It is worth noting that we preferred to prepare $\mathbf{9}$ in situ from its oxide 5 rather than using 9 obtained initially from the ring closure. This is because phosphine oxide 5 , being air-stable and easy to recrystallise, was easier to purify than 9 as well as being a convenient compound to store.

Hydrolysis of $\mathbf{1 0}$ under the conditions of Allen et al. ${ }^{9}$ gave an 87% yield of the desired phosphine oxide $\mathbf{1 1}$ and only a small amount (9%) of ring opened product 12. These products were easily separated by flash chromatography. This preparation of 11 involves the one-pot formation of the P-phenyl compound 5 (a one-pot reduction, alkylation and then hydrolysis) all in good yield ($75 \times 88 \times 87 \%=57 \%$ overall). We could improve on this by using the direct synthesis shown in Scheme 3 using dichloro(propyl)phosphine $\left(\mathrm{PrPCl}_{2}\right)$ instead of PhPCl_{2}. This direct route gave 66% overall yield of $\mathbf{1 1}$.

However this route to 5 -alkyl dibenzo $[b, f]$ phosphepine oxides does depend on the rather erratic commercial availability of alkyl dichlorophosphines. We made PrPCl_{2} from PrMgCl via the organozinc reagent ${ }^{12,13}$ and PCl_{3}, though this gave only 33% yield of PrPCl_{2}. This dichlorophosphine later became commercially available as are MePCl_{2} and EtPCl_{2}. Either method (phosphonium salt hydrolysis or dilithiated aryl reaction with PrPCl_{2}) gave the propyl compound $\mathbf{1 1}$ on a gram scale. Both phosphepine oxides $\mathbf{5}$ and $\mathbf{1 1}$ have a characteristic $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$
pattern for the diastereotopic pairs of protons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}-$ backbone linking the two benzene rings, no doubt as a result of the twisted conformation observable by X-ray crystallography. ${ }^{14}$

Attempts to find an alternative and more general route

Since PhPCl_{2} and PrPCl_{2} reacted cleanly with the dilithiated intermediate 8, it seemed an obvious extension to use PCl_{3} and add whatever group was required on the phosphorus atom after ring closure. This reaction led instead to a remarkable new compound, the bis(phosphine oxide) $\mathbf{1 3}$ (Scheme 5). Identific-

> 3 $\begin{array}{ll}\text { i) } & 0.5 \text { equiv. } \mathrm{Bu}^{n} \mathrm{Li}, \mathrm{THF},-78^{\circ} \mathrm{C}, 40 \mathrm{~min} \\ \text { ii) } & 1.0 \text { equiv. } \mathrm{Bu}^{n} \mathrm{Li},-78^{\circ} \mathrm{C}, 30 \mathrm{~min} \\ \text { iii) } & \mathrm{PCl}_{3} \\ \text { iv) } & \mathrm{H}_{2} \mathrm{O}_{2}\end{array}$

13
Scheme 5
ation came from a FAB mass spectrum and the presence in the proton NMR spectrum of both the characteristic $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern of the backbone of the phosphepine and a benzylic singlet.

This compound is formed from no less than six molecules of 3 as well as two of PCl_{3} (or three molecules of $\mathbf{8}$ and two of PCl_{3}) and represents a remarkable piece of molecular recognition by small molecules. Approximately eight separate steps are needed to bring the eight molecules of starting material together. Though 13 is never formed in good yield (maximum 34%) it kept cropping up when we tried to use a number of different electrophiles with the dilithiated intermediate $\mathbf{8}$.
Attempts to use POCl_{3} in the same way led instead to $2,2^{\prime}$ dichlorobibenzyl and a trace (7%) of the secondary phosphine oxide 14 with a characteristic ${ }^{1} J_{\mathrm{PH}}$ of 484 Hz in the NMR spectrum (Scheme 6). Attempts to use PhPOCl_{2} or PrPOCl_{2} gave no useful results.

Scheme 6

Chemistry of lithium derivatives of phosphepines

We have made extensive use of the addition of lithiated alkyldiphenylphosphine oxides to carbonyl compounds ${ }^{3}$ and it was important to establish how well the seven-membered cyclic analogues performed. We have previously studied the fivemembered cyclic analogues, the dibenzophospholes, ${ }^{15,16}$ which show some important differences from the simple $\mathrm{Ph}_{2} \mathrm{PO}$ compounds. We repeated a typical reaction, the addition of prop-

Scheme 7
yldiphenylphosphine oxide $\mathbf{1 5}$ to cyclohexanone (Scheme 7), to get a direct comparison without variation in operator's skill The adduct 16 was formed in 82% yield.

The phosphepine oxide $\mathbf{1 1}$ gave, if anything, a slightly higher yield of adduct $\mathbf{1 7}$. With cyclobutanone under the same condi-

tions, adduct $\mathbf{1 8}$ was isolated in 62% yield but this could be improved to 73% using our internal quench procedure. ${ }^{17}$ An internal quench (i.e. $\mathrm{Me}_{3} \mathrm{SiCl}$ was added to $\mathbf{1 1}$ followed by LDA) also gave an excellent yield of the silyl compound 19. ${ }^{18}$

A direct comparison between the benzaldehyde adducts allowed an assessment of the stereochemical capabilities of the lithiated phosphepine oxides. Adducts $\mathbf{2 0}$ were formed in identical yield (88%) but with rather lower selectivity than adducts 21 (Scheme 8). We do not of course suggest that the phosph-

epine oxides have any advantages over the simple diphenylphosphine oxides - the significant observation is that these results enhance the potential of the chiral analogues ${ }^{1,2}$ in asymmetric synthesis simply because phosphepine $\mathbf{1 1}$ shows essentially the same chemistry as the acyclic compounds. This work continues.

Experimental

Flash chromatography ${ }^{19}$ was performed using Merck 9385 Kieselgel 60 . Thin layer chromatography (TLC) was performed
using commercially available glass plates coated with Merck silica Kieselgel $60 \mathrm{~F}_{254}$. High performance liquid chromatography (HPLC) was performed using a Dynamax prepacked silica column ($25 \mathrm{~cm} \times 21.4 \mathrm{~mm}$ internal diameter) using a Gilson model 303 pump and a Cecil Instruments CE212A UV detector at 254 nm . All solvents were distilled before use. Light petroleum refers to the fraction with bp $40-60^{\circ} \mathrm{C}$. Anhydrous solvents were distilled from LiAlH_{4} in the case of $\mathrm{Et}_{2} \mathrm{O}$ and THF, from CaH_{2} in the case of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}$, hexane and toluene, and from CaCl_{2} in the case of CCl_{4}. Triphenylmethane was used as indicator for THF.

Melting points were determined on a Reichert hot stage microscope and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 1600 series FTIR spectrometer.

All NMR instruments used were made by Bruker. Proton, carbon, phosphorus and fluorine NMR spectra were recorded using the AC 250 , WM 250 or AM 400 Fourier transform spectrometers, using an internal deuterium lock. Carbon spectra were determined with broad band decoupling and an attached proton test (APT). Signals from carbon atoms with an odd number of attached protons are designated $\left({ }^{+}\right)$while those with an even number are designated $\left(^{-}\right) . J$ Values are given in Hz .

All mass spectra were determined by electron impact (EI) unless otherwise stated. Other methods used were chemical ionisation (Cl) and fast atom bombardment (FAB). All three methods were performed on a Kratos MS890 spectrometer by technical staff. Microanalyses were performed by technical staff using either Carlo Erba 1106 or Perkin-Elmer 240 automatic analysers.

When using n-butyllithium, and especially when using sec-butyl- or tert-butyl-lithium, best results were obtained using Hamilton 1700 series gas-tight Teflon tipped microsyringes ($<1000 \mu \mathrm{l}$) which did not require lubrication, and Hamilton 1000 series gas-tight Teflon tipped syringes ($>1 \mathrm{~cm}^{3}$) lubricated with poly(dimethylsiloxane) 200^{\circledR} fluid with a viscosity of 100 centistokes.

Key to NMR assignments

The notation used for aromatic protons and carbon assignments is as follows. Aromatic protons are referred to by their ring position followed by ' -ArH '. The ' C ' in ' ArC ' is the numbered carbon within that ring and not a carbon attached to the ring. Carbons outside the ring are italicised when ' Ar ' is included in the assignment e.g. $129.0^{+}\left({ }^{4} J_{\mathrm{CF}} 2.3, \mathrm{ArCH}\right)$. When a carbon nucleus is observed to couple to only one other nucleus then it is not referred to as a doublet. Any greater multiplicity, such as a double doublet, is noted.

Protons and carbons which form part of a phosphepine system are numbered according to the system indicated below. The

exocyclic portion is assigned using the labels ipso, ortho, meta and para. When two ortho positions are non-equivalent, ortho' is also used and their positions illustrated.

In an instance when a compound contains a heterocyclic portion and an exocyclic ring and it is clear which portion an atom belongs to, but not the exact position, then the labels 'het' and 'exo' are used respectively in the assignment.

When coupling constants refer to the coupling between two protons, or between two unassigned nuclei, then no subscripts follow ' J '.

General procedure for the medium scale preparation of $\mathbf{2 , 2} \mathbf{2}^{\prime}$ dilithiobibenzyl 8

2-Bromobenzyl bromide ($13.1 \mathrm{~g}, 52.4 \mathrm{mmol}$) was dissolved in dry THF ($400 \mathrm{~cm}^{3}$) under argon and cooled to $-78^{\circ} \mathrm{C}$. n Butyllithium ($13.2 \mathrm{~cm}^{3}$ of a $2 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in cyclohexane mixed with $15 \mathrm{~cm}^{3}$ of dry $\mathrm{Et}_{2} \mathrm{O}, 26.4 \mathrm{mmol}$) was added dropwise to the stirred solution over 10 min . At this rate of addition the temperature of the reactants did not exceed $-68^{\circ} \mathrm{C}$. After stirring for a further 40 min , the second portion of n-butyllithium ($29.4 \mathrm{~cm}^{3}$ of a $2 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in cyclohexane with $50 \mathrm{~cm}^{3}$ of dry $\mathrm{Et}_{2} \mathrm{O}, 58.8 \mathrm{mmol}$) was added dropwise over 20 min . After stirring for 15 min at $-78^{\circ} \mathrm{C}$, the dilithiobibenzyl solution was ready for use.

General procedure for the small scale preparation of 2,2'dilithiobibenzyl 8

2-Bromobenzyl bromide ($2.02 \mathrm{~g}, 8.08 \mathrm{mmol}$) was dissolved in dry THF $\left(50 \mathrm{~cm}^{3}\right)$ under argon and cooled to $-78^{\circ} \mathrm{C}$. n-Butyllithium $\left(3.00 \mathrm{~cm}^{3}\right.$ of a $1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane, 4.50 mmol) was added dropwise to the stirred solution. After stirring for a further 40 min , the second portion of n-butyllithium $\left(5.65 \mathrm{~cm}^{3}\right.$ of a $1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane, 8.48 mmol) was added dropwise. After stirring for 30 min at $-78^{\circ} \mathrm{C}$, the dilithiobibenzyl solution was ready for use.

10,11-Dihydro-5-phenyl-5H-dibenzo[b, f]phosphepine 5-oxide 5 2-Bromobenzyl bromide ($13.1 \mathrm{~g}, 52.4 \mathrm{mmol}$) was lithiated as above (medium scale method). Dichloro(phenyl)phosphine $\left(4.4 \mathrm{~cm}^{3}, 32.4 \mathrm{mmol}\right)$ dissolved in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise over 20 min . At this rate of addition the temperature of the reactants was maintained below $-70^{\circ} \mathrm{C}$. Analysis by gas chromatography after 18 min indicated that the reaction was complete. The reaction mixture was allowed to warm. When the temperature had reached $-10^{\circ} \mathrm{C}, \mathrm{NaOH}\left(10 \mathrm{~cm}^{3}\right.$ of $6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution) was added to the vigorously stirred mixture followed by $\mathrm{H}_{2} \mathrm{O}_{2}$ ($30 \mathrm{~cm}^{3}$ of a 30% solution, 0.26 mol). After $35 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}\left(25 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture washed with brine $\left(3 \times 30 \mathrm{~cm}^{3}\right)$ and concentrated by evaporation under reduced pressure. Any remaining water was removed as an azeotrope with toluene. The residue was purified by flash chromatography, eluting with $3: 1$ EtOAc-hexane to yield the phosphine oxide ($5.94 \mathrm{~g}, 75 \%$) as prisms, mp 190.5$192.5^{\circ} \mathrm{C}$ (from EtOAc) (lit., ${ }^{4} 185^{\circ} \mathrm{C}$, from benzene); $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.32\left(2 \mathrm{H}\right.$, ddd, ${ }^{3} J_{\mathrm{PH}} 12.5, J 7.6$ and 1.2$)$, $7.51-$ $7.31(10 \mathrm{H}, \mathrm{m}), 7.24-7.13(2 \mathrm{H}, \mathrm{m}), 3.24-3.17(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{\mathrm{A}^{\prime}} \mathrm{H}_{\mathrm{B}^{\prime}} \mathrm{Ar}\right)$ and 3.03-2.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} H_{\mathrm{B}^{-}}$ $\left.\mathrm{CH}_{\mathrm{A}^{\prime}} H_{\mathrm{B}^{\prime}} \mathrm{Ar}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 143.8^{-}\left({ }^{2} J_{\mathrm{PC}} 11,9 \mathrm{a}-\mathrm{ArC}\right)$, $136.6^{-}\left({ }^{1} J_{\mathrm{PC}} 103\right.$, ipso-PhC), $133.5^{+}\left(J_{\mathrm{PC}} 7\right), 132.4^{+}\left({ }^{4} J_{\mathrm{PC}} 2\right.$, $2-\mathrm{ArC}), 131.4^{+}\left({ }^{4} J_{\mathrm{PC}} 3, p-\mathrm{PhC}\right), 130.8^{+}\left(J_{\mathrm{PC}} 11\right), 130.1^{-}\left({ }^{1} J_{\mathrm{PC}}\right.$ $100,4 \mathrm{a}-\mathrm{ArC}), 130.0^{+}\left(J_{\mathrm{PC}} 12\right), 128.5^{+}\left(J_{\mathrm{PC}} 12\right), 126.3^{+}\left(J_{\mathrm{PC}} 11\right)$ and $34.1^{-}\left({ }^{3} J_{\mathrm{PC}} 2, \mathrm{ArCH}\right)$. In another experiment, in which phenylphosphonic dichloride $\left[\mathrm{PhP}(\mathrm{O}) \mathrm{Cl}_{2}\right]$ was used as the electrophile, the yield was 36%.

10,11-Dihydro-5-propyl-5H-dibenzo[b, f]phosphepine 5-oxide 11 2-Bromobenzyl bromide ($2.71 \mathrm{~g}, 10.8 \mathrm{mmol}$) was lithiated as above (small scale method). Freshly distilled dichloro(propyl)phosphine ($0.77 \mathrm{~cm}^{3}$ in $9.2 \mathrm{~cm}^{3}$ of THF, 5.67 mmol) was added dropwise to the stirred solution at $-78^{\circ} \mathrm{C}$. After 2 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to room temperature and stirred overnight. Water $(40 \mu \mathrm{l})$ was added followed by silica (approx. 1 g) and the solvent evaporated under reduced pressure. Flash chromatography gave the phosphine which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$. Water (10 cm^{3}) was added and the mixture stirred vigorously as aqueous $\mathrm{H}_{2} \mathrm{O}_{2}\left(3 \mathrm{~cm}^{3}\right.$ of a 30% solution) was added dropwise. After 30 min , the layers were separated and the aqueous layer further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 15 \mathrm{~cm}^{3}\right)$. The combined organic
extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. Flash chromatography, eluting with EtOAc, gave the phosphine oxide ($904 \mathrm{mg}, 66 \%$) as rectangular prisms, $\mathrm{mp} 121-$ $122^{\circ} \mathrm{C}$ (from EtOAc-hexane); $R_{\mathrm{f}}(\mathrm{EtOAc})$ 0.18; $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1592(\mathrm{Ar}), 1573(\mathrm{Ar})$ and $1174(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 8.23\left(2 \mathrm{H}\right.$, ddd, ${ }^{3} J_{\mathrm{PH}} 12.1, J 7.1$ and $1.6,4$ and $6-$ $\mathrm{ArH}), 7.47-7.34(4 \mathrm{H}, \mathrm{m}), 7.23-7.18(2 \mathrm{H}, \mathrm{m}), 3.43-3.34(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}_{\mathrm{A}^{\prime}} \mathrm{H}_{\mathrm{B}^{\prime}} \mathrm{Ar}\right), 3.11-3.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} H_{\mathrm{B}}{ }^{-}\right.$ $\left.\mathrm{CH}_{\mathrm{A}^{\prime}} \cdot H_{\mathrm{B}^{\prime}} \mathrm{Ar}\right), 2.15-2.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2}\right), 1.60-1.41(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$ and $0.90\left(3 \mathrm{H}\right.$, td, $J 7.2$ and $\left.{ }^{4} J_{\mathrm{PH}} 0.8, \mathrm{CH}_{2} \mathrm{Me}\right)$; $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 142.9^{-}\left({ }^{2} J_{\mathrm{PC}} 11.3,9 \mathrm{a}-\mathrm{ArC}\right), 133.2^{+}\left(J_{\mathrm{PC}}\right.$ $6.1), 131.3^{-}\left({ }^{1} J_{\mathrm{PC}} 91.9,4 \mathrm{a}-\mathrm{ArC}\right), 131.1^{+}\left({ }^{4} J_{\mathrm{PC}} 2.6,2-\mathrm{ArC}\right)$, $129.7^{+}\left(J_{\mathrm{PC}} 11.8\right), 126.3^{+}\left(J_{\mathrm{PC}} 10.5\right), 37.1^{-}\left({ }^{1} J_{\mathrm{PC}} 70.8, \mathrm{PCH}_{2}\right)$, $34.9^{-}\left(\mathrm{ArCH}_{2}\right)$, $15.7^{-}\left({ }^{2} J_{\mathrm{PC}} 4.1\right)$ and $15.3^{+}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}} 15.6, \mathrm{CH}_{2} \mathrm{Me}\right)$; $m / z 270\left(27 \%, \mathrm{M}^{+}\right), 228\left(100, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}\right)$ and $227(66$, $\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}$) (Found: M^{+}, 270.1175. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{OP}$ requires M, 270.1174).

10,11-Dihydro-5-phenyl-5H-dibenzo[b,f]phosphepine 9

Trichlorosilane ($190 \mu \mathrm{l}, 1.88 \mathrm{mmol}$) was added to a suspension of phosphine oxide $5(226 \mathrm{mg}, 0.743 \mathrm{mmol})$ in dry toluene $\left(10 \mathrm{~cm}^{3}\right)$ and the mixture was refluxed overnight. After cooling, sodium hydroxide ($5 \mathrm{~cm}^{3}$ of a 10% aqueous solution) was added to the reaction mixture which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 25 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash chromatography, eluting with $9: 1$ hexane- $\mathrm{Et}_{2} \mathrm{O}$, to give the phosphine ($195 \mathrm{mg}, 77 \%$) as plates, $\mathrm{mp} 97-98^{\circ} \mathrm{C}$ (from EtOH) (lit., ${ }^{4} 94{ }^{\circ} \mathrm{C}$, from EtOH); $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 9\right) 0.47 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.36-$ $7.23(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.17-7.11 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 3.18 (4 H , s with 2 very small side bands, $\mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}(100.6$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 145.8-125.6 (${ }^{+}$and $^{-}$, several lines) and 34.6 $\left({ }^{3} J_{\mathrm{PC}} 3.0, \mathrm{ArCH}_{2}\right)$ (Found: $\mathrm{M}^{+}, 288.1079 . \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{P}$ requires M, 288.1068).

10,11-Dihydro-5-phenyl-5-propyl-5 \boldsymbol{H}-dibenzo[b, f]phosphepin-5ium iodide 10

The phosphine 9 ($195 \mathrm{mg}, 0.677 \mathrm{mmol}$) and propyl iodide (330 $\mu \mathrm{l}, 3.38 \mathrm{mmol}$) were refluxed in THF ($2.5 \mathrm{~cm}^{3}$) for 14 h . The THF was removed under reduced pressure and the remaining solids were washed with hexane to give the phosphonium salt $(267 \mathrm{mg}$, 86%) as hexagonal prisms, $\mathrm{mp} 207-209{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexane); $v_{\max }\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 1591\right.$ (Ar), 1574 (Ar) and 1439 (P$\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.98\left(2 \mathrm{H}\right.$, ddd, ${ }^{3} J_{\mathrm{PH}} 14.0, J 7.7$ and 1.1, 4-ArH), $7.73-7.44(11 \mathrm{H}, \mathrm{m}), 3.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2}\right), 3.30(4$ $\mathrm{H}, \mathrm{AB} \mathrm{m}$ virtually a singlet, $\left.\mathrm{ArCH}_{2}\right), 1.59(2 \mathrm{H}$, septet, $J 7.9$ and $\left.{ }^{3} J_{\mathrm{PH}} 7.9, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$ and $1.20\left(3 \mathrm{H}, \mathrm{td}, J 7.2\right.$ and ${ }^{4} J_{\mathrm{PH}} 1.4$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 148.1^{-}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}} 8.4,9 \mathrm{a}-\mathrm{ArC}\right)$, $135.1^{+}\left({ }^{4} J_{\mathrm{PC}} 2.8,2-\mathrm{ArC}\right), 134.8^{+}\left(J_{\mathrm{PC}} 11.0\right), 134.4^{+}\left({ }^{4} J_{\mathrm{PC}} 2.8, p-\right.$ $\mathrm{PhC}), 132.5^{+}\left(J_{\mathrm{PC}} 10.5\right), 132.0^{+}\left(J_{\mathrm{PC}} 11.7\right), 130.3^{+}\left(J_{\mathrm{PC}} 12.6\right)$, $128.2^{+}\left(J_{\mathrm{PC}} 12.6\right), 122.5^{-}\left({ }^{1} J_{\mathrm{PC}} 85.2,4 \mathrm{a}-\mathrm{ArC}\right), 116.1^{-}\left({ }^{1} J_{\mathrm{PC}} 80.4\right.$, ipso-PhC), 35.1 ${ }^{-}\left(J_{\mathrm{PC}} \mathrm{ArCH}_{2}\right), 26.7^{-}\left({ }^{1} J_{\mathrm{PC}} 51.6, \mathrm{PCH}_{2}\right), 16.9^{-}$ $\left({ }^{2} J_{\mathrm{PC}} 4.1, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$ and $15.2^{+}\left({ }^{3} J_{\mathrm{PC}} 17.4, \mathrm{CH}_{2} \mathrm{Me}\right) ; \mathrm{m} / \mathrm{z}(100 \%$, M^{+}) [Found (FAB): M^{+}, 331.16290. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{P}^{+}$requires M, 331.16155].

One-pot formation of $\mathbf{1 0 , 1 1 - d i h y d r o - 5 - p h e n y l - 5 - p r o p y l - 5 H - ~}$ dibenzo $[b, f]$ phosphepin-5-ium iodide 10 by reduction and alkylation

Polymethylhydrosiloxane ($890 \mu 1,41 \mathrm{mmol}$ of hydride) was added to a suspension of phosphine oxide $5(615 \mathrm{mg}, 2.02$ mmol) in dry THF ($4 \mathrm{~cm}^{3}$). Titanium isopropoxide ($600 \mu \mathrm{l}, 2.02$ mmol) was added and the mixture refluxed for 3 h 20 min before propyl iodide ($1.05 \mathrm{~cm}^{3}, 10.7 \mathrm{mmol}$) was added. After the mixture had been refluxed for 14 h , it was allowed to cool and hexane $\left(2 \mathrm{~cm}^{3}\right)$ was added. The mixture was cooled in ice and the precipitate filtered from the supernatant and washed with hexane to give the phosphepinium salt $(818 \mathrm{mg}, 88 \%)$ as a yellow solid.

Preparation of 10,11-dihydro-5-propyl-5H-dibenzo $[b, f]$ phosphepine $\mathbf{5}$-oxide 11 by hydrolysis of phosphepin-5-ium salt 10
Sodium hydroxide ($6 \mathrm{~cm}^{3}$ of a 2 m solution) was added to phosphepinium iodide $\mathbf{1 0}$ ($346 \mathrm{mg}, 0.755 \mathrm{mmol}$) suspended in EtOH $\left(10 \mathrm{~cm}^{3}\right)$ and the mixture was refluxed for 18 h . Ethanol was evaporated under reduced pressure, water $\left(5 \mathrm{~cm}^{3}\right)$ added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 15 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated under reduced pressure and the products separated by flash chromatography, eluting with EtOAc, to give the phosphine oxide 11 ($178 \mathrm{mg}, 87 \%$) and, from endocyclic cleavage, phosphine oxide $12(23 \mathrm{mg}, 9 \%)$; $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.43 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.69-7.62(3 \mathrm{H}, \mathrm{m})$, 7.50-7.40 (4 H, m), 7.33-7.19 (4 H, m), 7.13(1 H, t, J 7.3), 7.06 ($2 \mathrm{H}, \mathrm{d}, J 7.1$), $3.17-3.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.79(1 \mathrm{H}$, ddd, J 13.3, 11.2 and 5.7, $\left.\operatorname{ArCH}_{\mathrm{C}} \mathrm{CH}_{\mathrm{D}}\right), 2.55(1 \mathrm{H}$, ddd, $J 13.3$, 10.6 and 6.2, $\left.\mathrm{ArCH}_{\mathrm{C}} \mathrm{CH}_{\mathrm{D}}\right), 2.42-2.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{\mathrm{A}}\right), 2.28-$ $2.17\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{\mathrm{B}}\right), 1.85-1.67\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CH}_{\mathrm{A}}\right)$, $1.66-1.50\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CH}_{\mathrm{B}}\right)$ and $1.03(3 \mathrm{H}, \mathrm{td}, J 7.2$ and $\left.{ }^{4} J_{\mathrm{PH}} 0.6\right)$.
In another experiment, hydrolysis of phosphepinium salt $\mathbf{1 0}$ in aqueous sodium hydroxide gave 42% of 11 and 12% of $\mathbf{1 2}$. In another experiment, hydrolysis in aqueous methanol gave a 77% yield of $\mathbf{1 1}$ and a 4% yield of $\mathbf{1 2}$.

5,5'-(Bibenzyl-2,2'-diyl)bis(10,11-dihydro-5H-dibenzo[b,f]phosphepine 5 -oxide) 13 by attempted formation of phosphinate ester 22
Sodium 2-methylprop-2-enolate was prepared by adding 2-methylprop-2-en-1-ol ($680 \mu \mathrm{l}$ in $5 \mathrm{~cm}^{3}$ of THF, 8.08 mmol) to $\mathrm{NaH}(415 \mathrm{mg}$ of $60 \mathrm{wt} \%, 10.4 \mathrm{mmol}$) and stirring at room temperature for 30 min . Bromobenzyl bromide ($2.02 \mathrm{~g}, 8.08 \mathrm{mmol}$) was reacted by the small scale method above. Freshly distilled phosphorus trichloride ($458 \mu 1$ in $2.3 \mathrm{~cm}^{3}$ of THF, 5.25 mmol) was added dropwise to the stirred solution at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature overnight and then cooled to $-78{ }^{\circ} \mathrm{C}$. The sodium 2-methylprop2 -enolate solution was added dropwise. The reactants were allowed to warm to room temperature and stirred for 2 h before $\mathrm{H}_{2} \mathrm{O}_{2}\left(10 \mathrm{~cm}^{3}\right.$ of an approx. 33% solution, 88 mmol) was added dropwise. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(5 \mathrm{~cm}^{3}\right)$ was added to the mixture followed by saturated aqueous $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ and $\mathrm{H}_{2} \mathrm{O}_{2}\left(10 \mathrm{~cm}^{3}\right)$. Volatile materials were removed under reduced pressure and the remaining solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 50 \mathrm{~cm}^{3}\right)$, washed with brine ($20 \mathrm{~cm}^{3}$), dried and concentrated under reduced pressure. Separation of the products by flash chromatography, eluting with 5% methanol in EtOAc gave 10,11-dihydro-5-butyl- $5 H$-dibenzo $[b, f]$ phosphepine 5 -oxide ($342 \mathrm{mg}, 30 \%$); $R_{\mathrm{f}}(\mathrm{EtOAc}-\mathrm{MeOH}, 19: 1) 0.44$ tentatively identified spectroscopically. It had $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1592(\mathrm{Ar}), 1573(\mathrm{Ar})$ and $1162(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $8.22\left(2 \mathrm{H}, \mathrm{ddd},{ }^{3} J_{\mathrm{PH}} 12.1, J 7.1\right.$ and 1.7, 4 and $6-\mathrm{ArH}$), $7.46-7.34$ $(4 \mathrm{H}, \mathrm{m}), 7.22-7.17(2 \mathrm{H}, \mathrm{m}), 3.43-3.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{-}\right.$ $\left.\mathrm{CH}_{\mathrm{A}^{\prime}} \mathrm{H}_{\mathrm{B}^{\prime}} \mathrm{Ar}\right), 3.10-3.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{\mathrm{A}^{\prime}}, H_{\mathrm{B}^{\prime}} \mathrm{Ar}\right), 2.16-$ $2.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2}\right), 1.49-1.21\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and 0.80 ($3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{Me}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 143.0^{-}\left({ }^{2} J_{\mathrm{PC}}\right.$ 11.1, 9a-ArC), $133.3^{+}\left(J_{\mathrm{PC}} 6.0\right), 132.0^{+}\left({ }^{4} J_{\mathrm{PC}} 2.4,2-\mathrm{ArC}\right), 129.8^{+}$ ($J_{\mathrm{PC}} 11.8$), $126.4^{+}\left(J_{\mathrm{PC}} 10.5\right), 35.0^{-}\left(\mathrm{ArCH}_{2}\right), 34.8^{-}\left({ }^{1} J_{\mathrm{PC}} 70.9\right.$, $\left.\mathrm{PCH}_{2}\right), 24.0^{-}\left({ }^{2} J_{\mathrm{PC}} 4.8, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 23.9^{-}\left({ }^{3} J_{\mathrm{PC}} 15.9, \mathrm{PCH}_{2}{ }^{-}\right.$
$\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and $13.6^{+}\left(\mathrm{CH}_{2} \mathrm{Me}\right)$ and the bis(phosphine oxide) $\mathbf{1 3}$ ($294 \mathrm{mg}, 34 \%$) as rectangular prisms, $\mathrm{mp}>230^{\circ} \mathrm{C}$ (from EtOAc-EtOH); $R_{\mathrm{f}}(\mathrm{EtOAc}-\mathrm{MeOH}, 19: 1) 0.33 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1592(\mathrm{Ar})$ and $1162(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.08$ (4 H , ddd, ${ }^{3} J_{\mathrm{PH}} 12.8, J 7.7$ and $1.1,4$ and $\left.6-\mathrm{ArH}\right), 7.43-7.29(12 \mathrm{H}$, m), 7.19-7.13 ($6 \mathrm{H}, \mathrm{m}$), 6.95 ($2 \mathrm{H}, \mathrm{dd}, J 7.1$ and 4.7), 3.25-3.18 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArCH} \mathrm{A}_{\mathrm{B}} \mathrm{CH}_{\mathrm{A}^{\prime}} \cdot \mathrm{H}_{\mathrm{B}} \mathrm{Ar}\right), 3.06-2.99\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} H_{\mathrm{B}^{-}}\right.$ $\left.\mathrm{CH}_{\mathrm{A}^{\prime}} \cdot H_{\mathrm{B}^{\prime}} \mathrm{Ar}\right)$ and $2.65\left(4 \mathrm{H}, \mathrm{s}, \alpha-\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $145.2^{-}\left({ }^{2} J_{\mathrm{PC}} 8.8, o-\mathrm{ArC}\right)$, $143.4^{-}\left({ }^{2} J_{\mathrm{PC}} 10.6,9 \mathrm{a}-\mathrm{ArC}\right), 133.5^{+}\left(J_{\mathrm{PC}}\right.$ 12.7, exo-C), $133.0^{+}\left(J_{\mathrm{PC}} 7.4\right.$, het), $132.7^{-}\left({ }^{1} J_{\mathrm{PC}} 107.1\right.$, ipso$\mathrm{ArC}), 132.17^{+}(2-\mathrm{ArC}), 132.15^{-}\left({ }^{1} J_{\mathrm{PC}} 98.1,4 \mathrm{a}-\mathrm{ArC}\right), 131.8^{+}(p-$ $\mathrm{ArC}), 131.2^{+}$($J_{\mathrm{PC}} 10.1$, exo-C), $130.0^{+}\left(J_{\mathrm{PC}} 11.8\right.$, het), 126.4^{+} ($J_{\mathrm{PC}} 11.3$, het), $125.6^{+}\left(J_{\mathrm{PC}} 12.8\right.$, exo $), 35.4^{-}\left({ }^{3} J_{\mathrm{PC}} 5.0, \alpha-\mathrm{CH}_{2}\right)$ and $33.8^{-}\left(10-\mathrm{CH}_{2}\right) ; m / z 635\left(<0.9 \%, \mathrm{M}^{+}+1\right)$ and $51(100$, $\mathrm{C}_{4} \mathrm{H}_{3}$) [Found (+FAB): $\mathrm{M}^{+}+\mathrm{H}, 635.2288 . \mathrm{C}_{42} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{P}_{2}+\mathrm{H}$ requires $M, 635.2269]$.

Formation of dichlorobibenzyl by attempted formation of phosphinic acid under reverse addition conditions

2-Bromobenzyl bromide ($2.17 \mathrm{~g}, 8.68 \mathrm{mmol}$) was reacted by the small scale method above and then rapidly added via cannula to a stirred solution of freshly distilled phosphorus oxychloride ($0.75 \mathrm{~cm}^{3}, 5.25 \mathrm{mmol}$) in dry THF ($10 \mathrm{~cm}^{3}$) under argon at $-78^{\circ} \mathrm{C}$. The reactant temperature rose to $-38^{\circ} \mathrm{C}$ during the addition. The reaction mixture was allowed to warm to room temperature and left overnight. It was cooled to $0{ }^{\circ} \mathrm{C}$ and saturated aqueous $\mathrm{NaHCO}_{3}\left(3 \mathrm{~cm}^{3}\right)$ was added. THF was removed under reduced pressure before $\mathrm{HCl}\left(60 \mathrm{~cm}^{3}\right.$ of a concentrated solution) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(4 \times 30 \mathrm{~cm}^{3}\right)$ and EtOAc ($30 \mathrm{~cm}^{3}$). The combined extracts were concentrated by evaporation under reduced pressure and acidic products were extracted from the residue by dissolving it in $\mathrm{EtOAc}\left(50 \mathrm{~cm}^{3}\right)$ and extracting with saturated aqueous $\mathrm{NaHCO}_{3}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The aqueous extract was acidified with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}\left(6 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30$ $\left.\mathrm{cm}^{3}\right)$. This organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue (397 mg) contained little of the desired product and was discarded. The products remaining in the non-acidic portion of the reaction mixture were separated by flash chromatography, eluting with EtOAc, to give dichlorobibenzyl ($609 \mathrm{mg}, 56 \%$), R_{f} (hexane) $0.34 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.39-7.33(2 \mathrm{H}, \mathrm{m}), 7.18-7.08(6 \mathrm{H}, \mathrm{m})$ and $3.30(4 \mathrm{H}$, $\mathrm{s}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 139.1^{-}, 134.2^{-}, 130.7^{+}, 129.6^{+}$, $127.7^{+}, 126.9^{+}$and $34.0^{-} ; m / z\left(26 \%, \mathrm{M}^{+}\right)$and $125\left(100, \mathrm{ArCH}_{2}\right)$ and 10,11-dihydro-5H-dibenzo $[b, f]$ phosphepine 5-oxide 14 (67 $\mathrm{mg}, 7 \%)$

General procedure for the reaction of phosphine oxides with carbonyl compounds

n-Butyllithium ($130 \mu \mathrm{l}$ of a 1.5 m solution in hexane, 0.195 mmol , 1.06 equiv.) was added dropwise to a stirred solution of the phosphine oxide (0.184 mmol) in dry THF ($1.5 \mathrm{~cm}^{3}$) under argon at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 45 min , the aldehyde or ketone (0.267 mmol in THF solution, 1.4 equiv.) was added dropwise. After stirring for 20 min at $-78^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred for 30 min before saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(1 \mathrm{~cm}^{3}\right)$ was added. The THF was removed under reduced pressure, water was added $\left(5 \mathrm{~cm}^{3}\right)$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 5 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the product was purified by flash chromatography.

1-(1-Diphenylphosphinoylpropyl)cyclohexan-1-ol 16

Diphenyl(propyl)phosphine oxide ($45 \mathrm{mg}, 0.184 \mathrm{mmol}$) was reacted as above with cyclohexanone to give, after flash chromatography, eluting with 1:1 EtOAc-hexane, the alcohol (52 $\mathrm{mg}, 82 \%$) as needles, $\mathrm{mp} 201-202.5^{\circ} \mathrm{C}$ (from EtOAc); R_{f} (EtOAc-hexane, 1:1) 0.27; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3386$ (br, O-H), $1602(\mathrm{Ar})$ and $1168(\mathrm{P}=\mathrm{O}$ or $\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.86-$ $7.81\left(2 \mathrm{H}, \mathrm{m}, o\right.$ and $\left.o^{\prime}-\mathrm{Ph}_{\mathrm{A}} \mathrm{H}\right), 7.78-7.73\left(2 \mathrm{H}, \mathrm{m}, o\right.$ and $o^{\prime}-$
$\left.\mathrm{Ph}_{\mathrm{B}} \mathrm{H}\right), 7.49-7.40(6 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.25\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} \mathrm{~J}_{\mathrm{PH}}\right.$ 8.9 and $J 4.3$), 1.93-1.82 ($2 \mathrm{H}, \mathrm{m}$), 1.70-1.24 ($9 \mathrm{H}, \mathrm{m}$), 1.13-1.04 $(1 \mathrm{H}, \mathrm{m})$ and $0.80\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 136.1-128.3 ($\mathrm{Ph}_{2} \mathrm{PO}$), $75.3^{-}\left({ }^{2} J_{\mathrm{PC}} 4.2, \mathrm{COH}\right), 48.6^{+}$ $\left({ }^{1} J_{\mathrm{PC}} 66.8, \mathrm{PCH}\right), 39.5^{-}\left({ }^{3} J_{\mathrm{PC}} 6.1, \operatorname{HOC} C_{\mathrm{A}} \mathrm{H}_{2}\right), 36.0^{-}\left({ }^{3} J_{\mathrm{PC}} 8.5\right.$, $\left.\mathrm{HOCC} \mathrm{C}_{\mathrm{B}} \mathrm{H}_{2}\right), 25.6^{-}\left(\mathrm{PCHCH}_{2}\right), 21.9^{-}\left(\mathrm{HOCCH}_{2} \mathrm{C}_{\mathrm{A}} \mathrm{H}_{2}\right), 21.8^{-}$ $\left(\mathrm{HOCCH}_{2} \mathrm{C}_{\mathrm{B}} \mathrm{H}_{2}\right), 18.6^{-}\left(\mathrm{HOCCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and $15.8^{+}\left({ }^{3} J_{\mathrm{PC}}\right.$ 6.3, Me); m/z $342\left(39 \%, \mathrm{M}^{+}\right), 324\left(24, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 244$ [66, $\left.\mathrm{M}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}\right], 299\left[100, \mathrm{M}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-\mathrm{Me}\right], 202$ (84, $\mathrm{Ph}_{2} \mathrm{POH}$) and 201 (72, $\mathrm{Ph}_{2} \mathrm{PO}$) (Found: $\mathrm{M}^{+}, 342.1742$. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P}$ requires $M, 342.1749$).
syn-(1RS,2RS)- and anti-(1RS,2SR)-2-Diphenylphosphinoyl-1-phenylbutan-1-ol 21
Diphenyl(propyl)phosphine oxide ($45 \mathrm{mg}, 0.184 \mathrm{mmol}$) was reacted as above with benzaldehyde to give, after flash chromatography eluting with EtOAc, the alcohols 21 previously characterised by Buss and Warren ${ }^{20}$ ($57 \mathrm{mg}, 88 \%$) in an $89: 11$, anti: syn ratio by ${ }^{1} \mathrm{H}$ NMR spectroscopy; anti-21, $R_{\mathrm{f}}(\mathrm{EtOAc})$ $0.51 ; \operatorname{syn}-21, R_{\mathrm{f}}(\mathrm{EtOAc}) 0.37 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.00-7.95$ $\left(2 \mathrm{H}^{\text {anti }}, \mathrm{m}\right), 7.84\left(2 \mathrm{H}^{\text {anti }}, \mathrm{m}\right), 7.77-7.73\left(2 \mathrm{H}^{\text {syn }}, \mathrm{m}\right), 7.57-6.99$ $\left(11 \mathrm{H}^{\text {anti }}\right.$ and $\left.13 \mathrm{H}^{\text {syn }}, \mathrm{m}\right), 5.60\left(1 \mathrm{H}^{\text {syn }}, \mathrm{d}, J 4.7, \mathrm{OH}\right), 5.26(1$ $\left.\mathrm{H}^{\text {anti }}, \mathrm{d},{ }^{3} J_{\mathrm{PH}} 9.4, \mathrm{PCHCHOH}\right), 5.06\left(1 \mathrm{H}^{\text {syn }}\right.$, br dt, ${ }^{3} J_{\mathrm{PH}} 15.9$ and 4.8, PCHCHOH$), 4.83\left(1 \mathrm{H}^{\text {anti }}, \mathrm{s}, \mathrm{OH}\right), 2.63\left(1 \mathrm{H}^{\text {syn }}, \mathrm{br} \operatorname{td}, J 11.2\right.$ and $\left.{ }^{2} J_{\mathrm{PH}} 4.6, \mathrm{PCH}\right), 2.39\left(1 \mathrm{H}^{\text {anti }}, \mathrm{q},{ }^{2} J_{\mathrm{PH}} 5.5\right.$ and $\left.J 5.5, \mathrm{PCH}\right)$, 1.97-1.82 ($\left.1 \mathrm{H}^{\text {anti }}, \mathrm{m}, \mathrm{PCHCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}}\right), 1.69-1.54\left(1 \mathrm{H}^{\text {anti }}\right.$ and $1 \mathrm{H}^{s y n}, \mathrm{~m}, \mathrm{PCHCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}}{ }^{\text {anti }}$ and $\left.\mathrm{PCHCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}}{ }^{\text {syn }}\right), 1.51-1.42$ $\left(1 \mathrm{H}^{s y n}, \mathrm{~m}, \mathrm{PCHCH}_{\mathrm{A}} \mathrm{CH} H_{\mathrm{B}}\right), 0.62\left(3 \mathrm{H}^{\text {syn }}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $0.36\left(3 \mathrm{H}^{\text {anti }}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right)$.
syn-(1RS,2RS)- and anti-(1RS,2SR)-10,11-Dihydro-5-(1-phenyl -1-hydroxybutan-2-yl)-5H-dibenzo[b,f]phosphepine 5-oxide 20 Propylphosphepine oxide $11(50 \mathrm{mg}, 0.185 \mathrm{mmol})$ was reacted as above with benzaldehyde to give, after flash chromatography eluting with EtOAc, the alcohols $20(61 \mathrm{mg}, 88 \%)$ in a $73: 27$, anti:syn ratio by ${ }^{1} \mathrm{H}$ NMR spectroscopy; anti-20, $R_{\mathrm{f}}(\mathrm{EtOAc}-$ hexane, 1:1) 0.27 ; syn-20, $R_{\mathrm{f}}\left(\right.$ EtOAc-hexane, 1:1) $0.13 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.35\left(1 \mathrm{H}^{\text {anti }}\right.$, dd, ${ }^{3} J_{\mathrm{PH}} 11.6$ and $J 7.7,4$ or $\left.6-\mathrm{ArH}\right)$, $8.25\left(1 \mathrm{H}^{\text {anti }}, \mathrm{dd},{ }^{3} J_{\mathrm{PH}} 11.8\right.$ and $J 7.5,4$ or $\left.6-\mathrm{ArH}\right), 8.19\left(1 \mathrm{H}^{s y n}\right.$, dd, ${ }^{3} J_{\mathrm{PH}} 12.0$ and $J 7.5,4$ or $\left.6-\mathrm{ArH}\right), 7.53-6.90\left(11 \mathrm{H}^{\text {anti }}\right.$ and 12 $\left.\mathrm{H}^{\text {syn }}, \mathrm{m}, \mathrm{ArH}\right)$, $5.66\left(1 \mathrm{H}^{s y n}, \mathrm{~d},{ }^{3} J_{\mathrm{PH}} 9.2, \mathrm{OH}\right), 5.49\left(1 \mathrm{H}^{\text {anti }}, \mathrm{s}\right.$, $\mathrm{OH}), 5.27\left(1 \mathrm{H}^{\text {anti }}\right.$, d, ${ }^{3} J_{\mathrm{PH}} 9.1$, PCHCHOH $), 5.18\left(1 \mathrm{H}^{s y n}\right.$, ddd, ${ }^{3} J_{\mathrm{PH}} 26.9, J 9.2$ and 4.3 , PCHCHOH $), 3.52\left(1 \mathrm{H}^{\text {anti }}\right.$, dd, $J 16.5$ and 9.5, $\mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $3.46\left(1 \mathrm{H}^{\text {anti }}\right.$, dd, $J 16.5$ and 9.8 , $\left.\mathrm{ArCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.41-3.30\left(2 \mathrm{H}^{\text {syn }}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}} \mathrm{Ar}\right), 3.15(1$ $\mathrm{H}^{\text {anti }}$, dd, $J 16.5$ and 10.7, $\left.\mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}} \mathrm{Ar}\right), 3.08\left(1 \mathrm{H}^{\text {anti }}\right.$, dd, $J 17.0$ and 10.3, $\left.\mathrm{CH}_{\mathrm{C}} H_{\mathrm{D}} \mathrm{Ar}\right), 3.01-2.93\left(2 \mathrm{H}^{\mathrm{syn}}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{\mathrm{C}} H_{\mathrm{D}}-\right.$ Ar), $2.65\left(1 \mathrm{H}^{s y n}\right.$, td, $J 10.3$ and $\left.{ }^{2} J_{\mathrm{PH}} 4.3, \mathrm{PCH}\right), 2.21\left(1 \mathrm{H}^{\text {anti }}\right.$, $\mathrm{dt},{ }^{2} J_{\mathrm{PH}} 6.1$ and $\left.J 4.2, \mathrm{PCH}\right), 1.96-1.85\left(1 \mathrm{H}^{s y n}, \mathrm{~m}, \mathrm{PCH}-\right.$ $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.79-1.52\left(2 \mathrm{H}^{\text {anti }}, \mathrm{m}, \mathrm{PCHC} H_{2}\right), 1.50-1.37\left(1 \mathrm{H}^{\text {syn }}, \mathrm{m}\right.$, $\left.\mathrm{PCHCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 0.93\left(3 \mathrm{H}^{\text {syn }}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $0.27\left(3 \mathrm{H}^{\text {anti }}, \mathrm{t}\right.$, $J 7.5, \mathrm{CH}_{2} \mathrm{Me}$).

10,11-Dihydro-5-[1-(1-hydroxycyclohexyl)propyl]-5 H -dibenzo[b, f]phosphepine 5-oxide 17

Propylphosphepine oxide $11(50 \mathrm{mg}, 0.185 \mathrm{mmol})$ was reacted as above with cyclohexanone to give, after flash chromatography, eluting with $1: 1 \mathrm{EtOAc}$-hexane, the alcohol (58 mg , 85%) as fine needles, $\mathrm{mp} 242-243.5^{\circ} \mathrm{C}$ (from EtOAc-EtOH); R_{f} (EtOAc-hexane, 1:1) 0.29; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3375$ (br, O-H), $1592(\mathrm{Ar})$ and $1159(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.24(1 \mathrm{H}$, ddd, ${ }^{3} J_{\mathrm{PH}} 11.7, J 7.6$ and $1.2,4$ or $\left.6-\mathrm{ArH}\right), 8.17\left(1 \mathrm{H}\right.$, ddd, ${ }^{3} J_{\mathrm{PH}} 11.9, J$ 7.6 and $0.7,4$ or $6-\mathrm{ArH}), 7.53-7.32(4 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{t}, J 6.1$, 2 or $8-\mathrm{ArH}), 7.15(1 \mathrm{H}, \mathrm{t}, J 6.0,2$ or $8-\mathrm{ArH}), 4.89(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, 3.64-3.57 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}}\right), 3.47(1 \mathrm{H}, \mathrm{dd}, J 17.2$ and 6.1 , $\left.\mathrm{C} H_{\mathrm{C}} \mathrm{H}_{\mathrm{D}} \mathrm{Ar}\right), 3.11-3.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{\mathrm{C}} H_{\mathrm{D}} \mathrm{Ar}\right), 2.27(1$ $\mathrm{H}, \mathrm{td}, J 5.7$ and $\left.^{2} J_{\mathrm{PH}} 3.2, \mathrm{PCH}\right), 1.94-1.36\left[10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{\mathrm{s}}\right]$, 1.26-1.13 ($\left.1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{PCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.02-0.91(1 \mathrm{H}, \mathrm{br} \mathrm{m}$, $\left.\mathrm{PCHCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and $0.75(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Me}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$;
$\left.\mathrm{CDCl}_{3}\right) 142.0-125.9\left(\mathrm{Ar}_{2} \mathrm{PO}\right), 76.0^{-}\left({ }^{2} J_{\mathrm{PC}} 4.4, \mathrm{COH}\right), 49.9^{+}$ ($\left.{ }^{1} J_{\mathrm{PC}} 66.0, \mathrm{PCH}\right), 39.4^{-}\left({ }^{3} J_{\mathrm{PC}} 3.7, \mathrm{HOCC}_{\mathrm{A}} \mathrm{H}_{2}\right), 36.4^{-}\left({ }^{3} J_{\mathrm{PC}} 3.7\right.$, $\left.\mathrm{HOCC}_{\mathrm{B}} \mathrm{H}_{2}\right), \quad 34.6^{-} \quad\left(\mathrm{ArC}_{\mathrm{A}} \mathrm{H}_{2}\right), \quad 32.8^{-} \quad\left(\mathrm{ArC}_{\mathrm{B}} \mathrm{H}_{2}\right), \quad 25.6^{-}$ $\left(\mathrm{PCHCH}_{2}\right), 22.3^{-}\left(\mathrm{HOCCH}_{2} \mathrm{C}_{\mathrm{A}} \mathrm{H}_{2}\right), 22.2^{-}\left(\mathrm{HOCCH}_{2} \mathrm{C}_{\mathrm{B}} \mathrm{H}_{2}\right)$, $18.8^{-}\left(\mathrm{HOCCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and $14.9^{+}\left({ }^{3} J_{\mathrm{PC}} 4.1, \mathrm{Me}\right) ; \mathrm{m} / \mathrm{z} 368$ $\left(9.1 \%, \mathrm{M}^{+}\right), 350\left(4, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 270\left[8, \mathrm{M}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}\right]$ and 228 (70, $\mathrm{Ar}_{2} \mathrm{POH}$) (Found: $\mathrm{M}^{+}, 368.1906 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}$ requires $M, 368.1905)$.

10,11-Dihydro-5-[1-(1-hydroxycyclobutyl)propyl]-5H-dibenzo[b, f]phosphepine 5 -oxide 18

Propylphosphepine oxide $11(50 \mathrm{mg}, 0.185 \mathrm{mmol})$ was reacted as above with cyclobutanone to give, after flash chromatography, eluting with $1: 1$ EtOAc-hexane, the alcohol $(46 \mathrm{mg}$, 73%) as rectangular prisms, $\mathrm{mp} 229.5-231{ }^{\circ} \mathrm{C}$ (from EtOAc); R_{f} (EtOAc-hexane, 1:1) $0.32 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3362(\mathrm{O}-\mathrm{H}), 1592$ (Ar), $1262(\mathrm{P}=\mathrm{O}$ or $\mathrm{C}-\mathrm{O})$ and $1170(\mathrm{P}=\mathrm{O}$ or $\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 8.22-8.15(2 \mathrm{H}, \mathrm{m}, 4$ and 6-ArH), $7.51-7.33(4 \mathrm{H}, \mathrm{m})$, 7.27-7.23 ($1 \mathrm{H}, \mathrm{m}$), 7.20-7.17 ($1 \mathrm{H}, \mathrm{m}$), $5.68(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, 3.59-3.42 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}} \mathrm{Ar}\right), 3.12-3.03(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{\mathrm{C}} H_{\mathrm{D}} \mathrm{Ar}\right), 2.29\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{\mathrm{PH}} 7.0\right.$ and $\left.J 4.6, \mathrm{PCH}\right)$, $2.16-1.57(6 \mathrm{H}, \mathrm{m}), 1.55-1.45(2 \mathrm{H}, \mathrm{m})$ and $0.64(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 142.5^{-}\left({ }^{2} J_{\mathrm{PC}} 12.3\right.$, 9 a or 11a$\mathrm{ArC}), 142.3^{-}\left({ }^{2} J_{\mathrm{PC}} 11.1,9 \mathrm{a}\right.$ or $\left.11 \mathrm{a}-\mathrm{ArC}\right), 133.4^{+}\left(J_{\mathrm{PC}} 5.3\right)$, $133.2^{+}\left(J_{\mathrm{PC}} 6.3\right), 132.61^{-}\left({ }^{1} J_{\mathrm{PC}} 92.4,4 \mathrm{a}\right.$ or $\left.5 \mathrm{a}-\mathrm{ArC}\right), 132.60^{+}\left(J_{\mathrm{PC}}\right.$ $2.4), 132.1^{+}\left(J_{\mathrm{PC}} 2.4\right), 130.5^{+}\left(J_{\mathrm{PC}} 11.9\right), 129.7^{-}\left({ }^{1} J_{\mathrm{PC}} 88.5,4 \mathrm{a}\right.$ or $5 \mathrm{a}-\mathrm{ArC}), 129.6^{+}\left(J_{\mathrm{PC}} 11.8\right), 126.6^{+}\left(J_{\mathrm{PC}} 10.6\right), 126.4^{+}\left(J_{\mathrm{PC}} 10.3\right)$, $79.3^{-}\left({ }^{2} J_{\mathrm{PC}} 5.7, \mathrm{COH}\right), 52.0^{+}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}} 65.0, \mathrm{PCH}\right), 37.4^{-}\left({ }^{3}{ }^{\mathrm{PCC}} 4.0\right.$, $\left.\mathrm{COH} C_{\mathrm{A}} \mathrm{H}_{2}\right), 37.1^{-}\left({ }^{3} J_{\mathrm{PC}} 13.8, \mathrm{COHC}_{\mathrm{B}} \mathrm{H}_{2}\right), 34.6^{-}\left(\mathrm{ArC}_{\mathrm{A}} \mathrm{H}_{2} \mathrm{C}_{\mathrm{B}}{ }^{-}\right.$ $\left.\mathrm{H}_{2} \mathrm{Ar}\right), 33.6^{-}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}} 1.2, \mathrm{ArC}_{\mathrm{A}} \mathrm{H}_{2} \mathrm{C}_{\mathrm{B}} \mathrm{H}_{2} \mathrm{Ar}\right), 19.2^{-}, 15.1^{-}$and 14.6^{+} (Me); m/z $340\left(5.6 \%, \mathrm{M}^{+}\right), 325(18, \mathrm{M}-\mathrm{Me}), 312$ (7 , $\mathrm{M}-\mathrm{CH}_{2}=\mathrm{CH}_{2}$) and 228 (100, $\mathrm{Ar}_{2} \mathrm{POH}$) (Found: M^{+}, 340.1592. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{P}$ requires $M, 340.1592$).

10,11-Dihydro-5-(1-trimethylsilylpropyl)-5 H -dibenzo $[b, f]$ phosphepine 5-oxide 19

Lithium diisopropylamide (215μ of a 0.42 m solution in THF, 0.090 mmol) was added dropwise to a stirred solution of phosphine oxide $11(20.3 \mathrm{mg}, 0.752 \mathrm{mmol})$ and trimethylsilyl chloride ($47 \mu \mathrm{l}, 0.37 \mathrm{mmol}$) in THF $\left(1 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under argon. After stirring at $-78^{\circ} \mathrm{C}$ for 1 h 10 min , TLC indicated that the reaction had gone to completion. During the course of the reaction no red colour developed but the reaction mixture turned a slight yellow colour. The mixture was allowed to warm to room temperature, quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}\left(1 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 5 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash chromatography to give the phosphine oxide ($22 \mathrm{mg}, 86 \%$) as rectangular prisms, mp $98-100^{\circ} \mathrm{C}$ (from hexane); R_{f} (EtOAc) $0.47 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1592(\mathrm{Ar})$ and $1252(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.25-8.20(2 \mathrm{H}, \mathrm{m}, 4$ and 6-ArH), 7.42-7.33 (4 H , $\mathrm{m}), 7.20-7.14(2 \mathrm{H}, \mathrm{m}), 3.62-3.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{\mathrm{A}^{\prime}}\right.$ $\left.\mathrm{H}_{\mathrm{B}}, \mathrm{Ar}\right), 3.07-2.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{\mathrm{A}^{\prime}}, H_{\mathrm{B}}, \mathrm{Ar}\right), 1.96-1.80$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.75-1.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCHCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.43(1$ $\mathrm{H}, \mathrm{dt}, J 9.7$ and $4.9, \mathrm{PCHSi}), 0.73\left(3 \mathrm{H}, \mathrm{t},{ }^{4} J_{\mathrm{PH}} 7.4, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $-0.04\left(9 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{PH}} 0.6, \mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 142.5^{-}$ ${ }^{(} J_{\mathrm{PC}} 11.6,9 \mathrm{a}$ or $\left.11 \mathrm{a}-\mathrm{ArC}\right), 141.6^{-}\left({ }^{2} J_{\mathrm{PC}} 10.8,9 \mathrm{a}\right.$ or $\left.11 \mathrm{a}-\mathrm{ArC}\right)$, 134.2-129.5 (${ }^{+}$and ${ }^{-}$, several lines), 126.5-125.9 (${ }^{+}$, several lines), 34.7- $\left(\mathrm{ArC}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}} \mathrm{Ar}\right)$, $34.2^{+}\left({ }^{1} J_{\mathrm{PC}} 60.3, \mathrm{PCHSi}\right)$, 34.1^{-} $\left.\left(\mathrm{ArC}_{\mathrm{A}} C_{\mathrm{B}} \mathrm{Ar}\right), 18.8^{-}\left({ }^{2} J_{\mathrm{PC}} 3.9, \mathrm{PCHCH}\right)_{2}\right), 16.0^{+} \quad\left({ }^{3} J_{\mathrm{PC}} 4.6\right.$, $\left.\mathrm{CHCH}_{2} \mathrm{Me}\right)$ and $-0.5\left({ }^{3} \mathrm{~J}_{\mathrm{PC}} 1.3, \mathrm{SiMe}_{3}\right) ; \mathrm{m} / \mathrm{z} 342\left(17 \%, \mathrm{M}^{+}\right)$, 327 ($93, \mathrm{M}-\mathrm{Me}$), 300 ($100, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}$) and 228 (76, $\mathrm{M}-\mathrm{MeCH}=\mathrm{CHSiMe} 3$) (Found: M^{+}, 342.1563. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{OPSi}$ requires $M, 342.1569)$.

Acknowledgements

We thank EPSRC and Zeneca Specialties for a CASE award and Dr Daniel Levin for many helpful discussions.

References

1 S. Warren, P. Wyatt, M. McPartlin and T. Woodroffe, Tetrahedron Lett., 1996, 37, 5609.
2 S. Warren and P. Wyatt, Tetrahedron: Asymmetry, 1996, 7, 989.
3 J. Clayden and S. Warren, Angew. Chem., Int. Ed. Engl., 1996, 35, 241.

4 Y. Segall, E. Shirin and I. Granoth, Phosphorus Sulfur Relat. Elem., 1980, 8, 243.
5 F. G. Mann, I. T. Millar and B. B. Smith, J. Chem. Soc., 1953, 1130
6 J. L. Suggs and L. D. Freedman, J. Org. Chem., 1971, 36, 2566.
7 R. L. Letsing and I. H. Skoog, J. Am. Chem. Soc., 1955, 77, 5176.
8 W. E. Parham, L. D. Jones and Y. A. Sayed, J. Org. Chem., 1976, 41, 1184.

9 D. W. Allen, B. G. Hutley and A. C. Oades, J. Chem. Soc., Perkin Trans. 1, 1979, 2326.
10 L. Horner and W. D. Balzer, Tetrahedron Lett., 1965, 1157.
11 T. Coumbe, N. J. Lawrence and F. Muhammad, Tetrahedron Lett., 1994, 35, 625.

12 T. Weil, B. Prijs and H. Erlenmeyer, Helv. Chim. Acta, 1953, 36, 1314.

13 T. Weil, B. Prijs and H. Erlenmeyer, Helv. Chim. Acta, 1952, 35, 1412.

14 D. W. Allen, I. W. Nowell and P. E. Walker, Z. Naturforsch., B: Chem. Sci., 1980, 35b, 133.
15 J. Elliot, D. Hall and S. Warren, Tetrahedron Lett., 1989, 30, 601.
16 J. Elliot and S. Warren, Tetrahedron Lett., 1986, 27, 645.
17 C. Guéguen, P. O'Brien, S. Warren and P. Wyatt, J. Organomet. Chem., 1997, 529, 279.
18 P. O'Brien and S. Warren, Synlett, 1996, 579.
19 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
20 A. D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1985, 2307.

Paper 7/05815B
Received 8th August 1997
Accepted 18th September 1997

[^0]: \dagger Phosphepine was formerly known as phosphepin.

